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Abstract— the fault tolerance for real-time application 
avoidable by help of the protocol is CRR. However, existing 
checkpoint implementation support only non-real-time 
applications as the checkpoint overhead is usually non 
deterministic. In this paper, we represent an implementation 
of checkpoint scheme with the RTAI 3.8 supported by Linux, 
where services provided by the RTOS makes the checkpoint 
overhead, including the time to place recover the system from 
a failure is predictable. It also gives an optional view of the 
hard real-time definition and an appropriate perspective on 
why low cost general purpose computer can be an effective 
operating system available. The RTAI 3.8 for Linux describe 
here is a viable and effective open-free source software 
approach for adding hard real time capabilities to a widely 
available general purpose operating system. It keeps real time 
applications separated from non real time ones, achieving 
high efficiencies for both kinds of executions by affording 
appropriate synchronization and communication tools to 
allow an efficient interaction between two environments. 
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1. INTRODUCTION 

The study of temporal aspects of computations has been 
ongoing for several decades. However, in recent years the 
attention being paid to this subject has increased 
tremendously. A wide variety of system currently exists in 
which timeliness is an important requirement, and these are 
called real-time systems. More precisely, real-time systems 
are systems where the correctness of operation depends not 
only logical result of their computations, but also on the 
time at which the results are produced [8]. Consider a 
system in which data need o be processed at a regular and 
timely rate. For example, an aircraft uses a sequence of 
accelerometer pulses to determine its position. In addition, 
a system other than aeronautic ones requires a rapid 
response to events that occur at a no regular rates, such as 
an over temperature failure in the nuclear plant [1]. In some 
sense it is understood that these events require Real-Time 
processing. 

Now consider a situation in which passenger approaches 
an airline reservation counter to pickup his ticket for a 
certain flight from New Delhi to Mumbai, which leaving in 
5 minutes. The reservation clerk enters the appropriate 
information in to the computer and a few second later a 
boarding pass is generated. Is this Real-Time System? 
Indeed, all three systems- aircraft, nuclear plant, and airline 
reservation are Real-Time because they must process 
information within a specified interval or risk system 
failure. Although these examples provide an intuitive 
definition of real-Time system, it is necessary to clear 
define when a system is Real-Time and when it is not. The 
fundamental definition of Real-Time system engineering 

can vary depending on the resources consulted. The 
following definition have been collected and refined to 
form that is intended to be most useful to the practicing 
engineering, as opposed to the theorist. Real-Time systems 
are different from general purpose computing systems in 
several ways. The processes in a real-time system have 
time related attribute such as ready times, deadlines, 
computation times and periods [10]. Therefore, the worst 
case behaviour of real-time systems is more important than 
the average response time and user conveniences, which 
are important issues in general purpose computing systems. 

The hardware of the general purpose computer solves 
problems by repeated execution of macro instruction 
collectively known as software. Software is traditionally 
divided in two types’ system program and application 
program. A system program consists of software that 
interfaces with the underlying computer hardware, such as 
scheduler, device drivers, dispatcher, and program that acts 
as tools for the development of the application programs 
[9]. These tools include compilers, which translate high 
order language into a special binary format called object or 
machine code and linker, which prepare the object code for 
execution. An operating system is a specialized collection 
of system programs that manage the physical resources of 
the computer s. As such, a Real-Time operating system is a 
system program. An application programs written to solve 
specific problems. Such as a pay-roll preparation, inventory, 
and a navigation. Certain design considerations pay a role 
in the design of certain system programs and application 
software intended to run in Real-Time environment. 

The notation of a system is a central to software 
engineering, and indeed to all engineering and warrant 
formalization. A system is a mapping of set of inputs in to a 
set of output. When the internal details of the system are 
not of interest, the mapping function can be considered as a 
black box with one or more inputs entering and one or 
more output exiting from the system. Every Real-world 
entity, whether synthetic or occurring naturally, can be 
modelled as a system. In computing system, the inputs 
represent digital data from hardware devices and other 
software system. The input are often associated with 
sensors, cameras, and other devices that provide analog 
inputs, which are converted to digital data, or provide direct 
digital input. The digital output of the computer system can 
converted to analog outputs to control external hardware 
devices such as actuators and displays. The time between 
the presentation of a set of inputs to a system (stimulus) 
and the realization of the required behaviour (response) 
including availability of all associated output, is called 
response time of the system. 

A Real-Time system is a system that must satisfy 
explicit (bounded) response time constraints or risk severe 
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consequence including failure. A real-Time system is one 
whose logical correctness is based on both the correctness 
of the outputs and their timeliness. In any case, note that by 
making unnecessary the notation of timeliness, every 
system. Real-Time systems are often reactive or embedded 
systems. Reactive system are those in which scheduling is 
driven by ongoing interaction with their environment. For 
example, a fire control system reacts to buttons pressed by 
a user. These systems respond to a series of external inputs, 
which arrive in an unpredictable fashion. The Real-Time 
system process these inputs, take appropriate decisions and 
also generate output necessary to control the peripherals 
connected to them. The design of a Real-Time system must 
specify the timing requirements of the system and ensures 
that the system performance is both correct and timely. 
There are three types of time Constraints :(1) Hard: A late 
response is incorrect and implies a system failure. (2) Soft: 
Timeliness requirements are defined by using an average 
response time. If a single computation is late, it is not 
usually significant, although repeated late computation can 
result in system failures.(3) Firm: Firm real-time systems 
have hard deadlines, but where a certain low probability of 
missing a deadline can be tolerated.     

Scheduling and resources allocation in Real-Time 
systems are difficult problems due to the timing constraints 
of the task involved. The order in which the tasks are 
scheduled or dispatched has a large effect on the chances of 
the tasks meeting their timing constraints. Many of the 
Real-Time scheduling problems are known to be NP 
complete. A great deal of research has been conducted for 
scheduling in a variety of Real-Time system models. 

 
2. LITERATURE SURVEY 

2.1 Fault-Tolerance 
Due to the catastrophic consequences of violating timing 

constraints in hard Real-Time systems, it is important to 
consider the effects of the operating environment on the 
system. Since the environment may cause various kinds of 
faults to be generated, it is essential that fault tolerance be 
incorporated in a real-time system when it is designed. A 
system is fault-tolerant if it continues to perform its 
specified tasks in the presence of hardware failures or 
software errors [8]. A fault-Tolerant system has to ensure 
that faults in the system (which are defects in hardware or 
software) do not lead to a failure (which is the non-
performance of some action that is due or expected). Fault-
Tolerance is achieved through the use of redundancy, 
which is the addition of information, resources, or time 
beyond what is needed for normal system operation [8]. 
One of the main requirements of a fault-tolerant system is 
reliability. A highly reliable system continues to perform 
correctly over long interval of time. For many reasons, the 
fields of real-time systems and fault tolerance have largely 
evolved independently of each other. One of the reasons is 
that more important aspects of Real-Time system such as 
scheduling were not well understood till recently. Another 
reason is that massive hardware redundancy was used as 
the main technique for tolerating faults. This technique is 
expensive and could be afforded only in large system such 
as space shuttles and aircrafts. 

The fault tolerance requirements make a Real-Time 
system even more complicated because faults must be 
detected and tolerated within the timing constraints of the 
tasks. If faults trigger backup tasks for recovery purposes, 
the backup tasks must also be executed before the task 
deadlines. Due to these complexities, most Real-Time 
systems to date only dealt with timing constraints. 

Transient faults in Real-Time systems are generally 
tolerated using time redundancy, which involves the retry 
or re-execution of any task running during the occurrence 
of transient faults [1]. Several studies have done for using 
time redundancy in embedded Real-Time system for 
tolerating faults. Pandya and Malek in have used time 
redundancy for tolerating single fault. In the event of faults, 
all unfinished tasks are re-executed. Authors have 
presented static and dynamic allocation strategies to 
provide fault-tolerance. Two algorithms have proposed to 
reserve time for the recovery of periodic Real-Time tasks 
on a uniprocessor. Authors have provided exact 
schedulability tests for fault-tolerant task sets. In their 
paper, time redundancy has been employed to provide a 
predictable performance in the presence of failures. 
However no study has been done about adding appropriate 
and efficient time redundancy into the schedule, which is 
the main contribution of this paper. In recent years, Rate-
Monotonic (RM) scheduling policy has been used to 
schedule Real-Time tasks in a variety of critical 
applications. However, RM does not provide mechanism 
for managing time redundancy, so that Real-Time tasks 
will complete within their dead-lines even in the presence 
of faults. The goal of this paper is to add appropriate and 
efficient time redundancy to the RM scheduling policy for 
schedule periodic tasks.  
2.2 Causes of Hardware Transient Faults 

 Limitations in the accuracy of electromechanical 
devices (such as the positioning servomechanism for 
the reading heads of a disk drive). 

 Electromagnetic radiation received by interconnections 
(such as long buses acting like receiving antennas). 

 Power fluctuations or glitches not properly filtered by 
the power supply. 

 Effects of ionizing radiation on semiconductor devices. 
This last cause is currently the most important 
challenge to device designers and requires some more 
explanation. It has been only recently that the effects 
of ionizing radiation have been recognized as a source 
for “soft” faults in computer memories. “Soft” means 
that the information held in a memory device has 
changed, but no irreversible change in the device has 
occurred. Information in computer memories is stored 
as the presence or absence of charge in capacitors. 
When an energetic particle creates electron- whole 
pairs in the vicinity of a capacitor, some of the added 
charge carriers are collected by the capacitor. If the 
added charge is sufficiently large, the information 
stored is changed. The amount of charge that 
represents a bit and the “critical” charge that is needed 
to change it has decreased with miniaturization and the 
advent of VLSI technology. Transient failures in 
semiconductor memories due to ionizing radiation 
were not significant until the introduction of 16K bit 
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and 64K bit memory chips. Two main causes have 
been detected as far as sources of ionizing radiation 
which affect the operation of digital computers. 

 Trace amounts of natural radioactive elements in 
metallic and ceramic packaging materials. 

 The effects of cosmic rays. Although the effect of 
radioactive materials in packaging materials can be 
reduced by further purification and better system 
design, it is not clear how the effects of cosmic rays 
can be avoided. 

 
Fault-Tolerance is the tendency to function in the presence 
of hardware or software failure. In Real-Time system, 
Fault-Tolerance includes design choices that transform 
hard Real-Time into soft ones. There are often 
encountered in interrupt driven system, which are can 
provide for detecting and reacting to a missed deadlines. 
Fault-Tolerance designed to increase reliability in 
embedded system can be classified as either Spatial or 
Temporal.  

2.3 Spatial Fault-Tolerance 
The reliability of most hardware can be increased using 
redundant hardware. In one common scheme, two or more 
pair of redundant hardware devices provided inputs to the 
systems [9]. Each device compares its output to its 
companion. If the results are unequal, the pairs declare 
itself in error and the output ignored. An alternative is use 
a third device to determine which of the other two is 
correct. In either case, the penalty is increased cost, space, 
and power requirement. Voting scheme can also be used 
in software to increase the algorithm robustness [1].  Often 
like inputs are processed from more than one source and 
reduced to some sort of the best estimate of the actual 
value.  For example, an aircraft position can be 
determined via information from satellite positioning 
systems, inertial navigation data, and ground information. 
A composite of these reading is made using simple 
averaging on a kalman filter. 

2.4 Temporal Fault-Tolerance 
Involves techniques that allow for tolerating missed 

deadlines. Of two temporal Fault-Tolerant is more difficult 
to achieve because it requires careful algorithm design [1]. 
2.4.1 Checkpoints 

One way to increase Fault-Tolerant is to use checkpoints. 
In this scheme, intermediate results are written to memory 
at fixed location code for diagnostic purposes. These 
location are called check points, can be used during system 
operation and during verification. If the checkpoints are 
used only during testing, then the code is known as test 
Probe [5]. Test probes can introduce subtle timing errors. 
2.5 Recovery-Block Approach 
Fault-Tolerance can be further increased by using 
checkpoint in conjunction with predetermined reset points 
in software [7]. These reset points mark recovery block, the 
check point are tested for “reasonableness”. If the results 
are not reasonable, then processing resumes with prior 
recovery block. The points, of course, are that some 
hardware devices (or another process that is independent of 
the one in question) have provided faulty inputs to the 
blocks.  By repeating the processing in the block, with 
presumably valid data, the error will not be repeated. In the 

process block model, each recovery block represents a 
redundant parallel process to the block being tested. 
Although this strategy increases system reliability, it can 
have severe impact on performance because of the 
overhead added by the checkpoint and repetition of the 
processing in a block. 
2.6 Software Black Boxes 

The software black box is related to checkpoints and 
used in certain mission-critical systems to recover to 
prevent future disasters. The objective of a software black 
box is to recreate the sequence of the events that led to the 
software failure for the purpose of identifying the faulty 
code. The software black box recorder is essential a 
checkpoint that records and stores behavioural data during 
program execution, while attempting minimize any fact on 
that execution. The execution of a program functionalities 
results in a sequence of module transition such that the 
system can be described as a module their interaction. 
When the software is running, it passes control from one 
module to the next is considered a transition [6]. Call 
graphs can be developed from these transitions graphically 
using N×N matrix, where N represents the number of 
modules in a system. When each module is called, each 
transition is recorded in a matrix, incrementing that element 
in a transition frequency matrix. From this, a posterior of 
transition matrix can be derived that records the likeness 
that transition will occur. The transition frequency and 
transition matrices indicate the number of observed 
transitions and the probability that some sequence is 
missing in these data [7]. Recovery begins after the system 
has failed and the software black box has been recovered. 
The software back-box decoder generates possible 
functional scenarios based on the execution frequencies 
found in the transition matrix. The generation process 
attempts to map the modules in the execution sequence to 
functionalities, which allows for the isolation of the likely 
cause of failure. 
2.7 User-level Implementation of checkpoint for 

Multithreaded Application on Windows NT 
The existing user-level checkpoint scheme supports only a 
certain portion of multi-threaded programs on windows 
operating systems, which are based on single thread 
programs. Here we focuses on studying a checkpoint scheme 
to support inter- thread synchronization and quantitative 
variation of threads for multithreaded process.  Unlike other 
proposed schemes in which thread is suspend by another at 
checkpoint, this checkpoint scheme employs a strategy by 
which a thread suspends itself. Therefore, it is free of 
nondeterminacy of thread, suspension point, thereby 
ensuring correct rollback recovery. The checkpoint scheme 
supports also various synchronization objectives such as 
Mutex, Critical section and Event, as well as Semaphore, 
WaitableTimer and Thread. 
The multithreading paradigm becomes a prevalent 
programming model for application software, attributing to 
its capacity that enables a process to execute multiple tasks 
simultaneously and to exploit effective processor execution 
resources. Fault-Tolerance in such a multithreading 
environment also becomes essential requirement. As an 
effective approach to fault-tolerance, checkpoint recovery 
should play an important role in reliability of multithreaded 
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applications. For single threaded programs on Windows, 
many results have already been reported. 
In the checkpoint recovery mechanism, a process state is 
saved on a stable storage at a proper moment during normal 
execution. The saved process state is called a checkpoint. 
When a failure occurs, the program restarts and proceeds 
from a saved checkpoint. 
With respect to a user –level implementation of checkpoint 
for multithreaded process on windows, inter-thread 
synchronization and quantitative variation of threads are 
distinctive features of multithreaded process distinguishing 
from single-threaded process. In the existing checkpoint 
schemes, all threads are suspended regardless of whether or 
not they are in the middle of system API call. This 
technique can be problematic for successful rollback 
recovery. We address these issues and propose a new user-
level checkpoint scheme with reliable rollback recovery 
capability. 
2.7.1 The impact of thread suspension point on rollback 
recovery  
Process state includes two parts: user space state and 
process environment. At user level, process environment 
cannot be dumped directly, because it is located in OS 
kernel. So it is necessary to assume that application 
program interacts with system only through Win32 API. As 
program start up, the checkpoint library is injected into the 
address space of the process [7] to wrap system API [8] and 
to create a checkpoint thread responsible for check pointing 
and recovering. During the normal execution, the program 
threads calls to system API are intercepted. According to 
intercepted information, the checkpoint thread can 
determine process environment at the moment of check 
pointing. Just before dumping process state at check 
pointing, check pointing scheme should manage to make all 
program threads pause to guarantee consistency of the 
dumped process state. The suspension points of program 
thread impose an important impact on later roll-back 
recovery. When the suspension point of a program thread 
locates in API code segment 1 (ACS1) or kernel code 
segment (KCS), it is possible to cause failure of later 
recovery. 
If the suspension action is forced at a moment when a 
program thread is executing API code segment (ACS1), a 
suspension point will located in API. During recovery 
execution, it is possible for thread to access to kernel object 
through a stale handle in its stack, which will result in a 
failure of recovery execution. 
When suspension action is imposed on a program thread 
that executing kernel code, the thread does not pause. So it 
will not meet the condition that all threads must pause. 
Even if a program thread could pause kernel code, the 
suspension point would be in middle of KCS. Thread will 
begin to execute from the point AP2 at the later recovery. 
So kernel code segment from KP to AP2 will not be 
executed, which can induce a failure in recovery. 
2.8 Motivation 
Several real-time applications have already been mentioned 
where fault tolerance is an essential requirement. To further 
demonstrate the need for fault tolerance, consider the 
application of real-time system intensive care unit of 
hospitals. Such systems performs various monitoring task 

which give early warning of life-threatening situations, 
such abnormal blood pressure, heart rate, etc. it is essential 
that such real-time system continue to operate even in the 
presence of faults. Fault-tolerant medical systems include 
heart-lung machines used during open-chest surgery and 
artificial hearts. A system used for medical application 
which include a wide range of real-time performance 
requirements, for example, acquisition, processing and 
immediate display of images in an operating room. 
  Yet another use of fault-tolerant real-time scheduling is in 
the field of robotics. Wilfong states that the requirement of 
reliability of an automated system “is important for safety 
in an environment where robots and other automated 
equipment could be hazardous to humans working nearby” 
the author also adds that reliability is important for 
economic reasons, since faults can cause an expensive loss. 
Since many takes automated system have timing 
constraints, fault-tolerant real-time scheduling is an 
important requirement in such systems. Even through 
various kinds of faults can be tolerated by adding 
redundancy to the system, simply adding redundancy is not 
sufficient. The additional resources have to be managed 
such that all timing constraints are met, and faults are 
guaranteed to be tolerated. To manage the available 
resources (commonly) in order to achieve timing and fault-
tolerance guarantees specialized scheduling algorithms are 
required. 
Many real-time systems focus on the use of hardware 
redundancy to provide fault-tolerance. The main 
advantages of using hardware redundancy are that 
permanent hardware faults can be tolerated. However, 
hardware redundancy also has some draw-backs. First of all, 
hardware redundancy mainly targets permanent faults; 
using massive hardware redundancy to tolerate such faults 
is excessive. Many real-time systems with a need for fault 
tolerance cannot incorporate extensive hardware 
redundancy. An example of such system is mobile robots 
on factory floors. According to Singh and Murugesan, in 
their introductory article for a special issue on fault-tolerant 
system, “no system design can provide fault tolerance for 
conceivable failure scenario. The trick is to achieve the 
desired level of dependability by building in protection 
against the most likely failures, within the given design 
constraints”. 
Hardware redundancy has several other disadvantages 
including heavier weight, larger volume, and greater power 
consumption and as a result, increased cost. An other 
disadvantages of using only hardware redundancy is that 
correlated faults, which occur simultaneously in all 
hardware modules, cannot be tolerated. For example, 
electromagnetic radiation may simultaneously affect all 
hardware modules in a space shuttle. 
2.9 Related Work 
Check pointing Rollback and Recovery (CRR) is one of the 
popular temporal redundancy techniques used to achieve 
fault tolerance in real-time system [1]. However, as 
performing a check pointing also takes time and consumes 
resources, we must take into account the check pointing 
overhead to better predict the satisfaction of constraints in 
real-time application. 
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There are two main functions in a CRR protocol that need 
to be implemented, i.e., the check pointing function where 
checkpoints are taken periodically and the recovery 
function where systems are recovered from faults by rolling 
back to pervious check points. Pervious work in check 
pointing implementation, such as [2-4], normally 
accomplish these to function by utilizing multi-threaded 
processes on general purpose operating system, where main 
function thread has blocked by check pointing and recovery 
threads frequently. 
 

3. PROBLEM DEFINITION 
How ever, implementation built on non-real-time OS do 
not provide deterministic pre-emption and inter-process 
communication, because a kernel space thread cannot be 
interrupted by other kernel space thread or by user space 
threads. The OS kernel is “locked” once a kernel function 
is executing. This usage of locks introduces non-
deterministic latencies for both check point and recovery 
tasks, which are not tolerable in real-time applications.  
3.1 Objective 
Here, we implement the checkpoint scheme with Real-
Time application Interface (RTAI 3.8) which is a popular 
open source real-time patch for non real-time Linux. We 
treat main function, check pointing function, and recovery 
function as real-time tasks with different priorities so that 
the time to save a checkpoint and recovery from a fault 
becomes deterministic. It is implemented by using the 
RTAI 3.8 real-time interruptions and scheduling 
mechanisms. The check pointing library built on RTAI 3.8 
can hence be adopted by real-time application to provide 
fault tolerance.  
3.2 Work Plan for Library Implementation with RTAI 
3.2.1 RTAI 
The Real-Time Application Interface (RTAI) modifies the 
general purpose Linux Kernel so that the patch operating 
system can use the interrupt Abstraction approach to add 
deterministic real-time characteristic. Specifically, with an 
additional interrupt abstraction layer on top of general 
purpose Linux, RTAI can intercepts hardware interrupts 
before they go to the Linux kernel. RTAI then apply real-
time scheduling policies to decide which task shall be run 
first. Comparing with general purpose Linux. RTAI’s task 
scheduler uses fully preemptive scheduling based on fixed-
priority scheme and hence provides predictable behaviour 
for hard real-time tasks. 
For nice feature of RTAI is that it provides a technique 
named LXRT which allow users to develop and run hard 
real-time tasks in user space using the same API that is 
provided in kernel space RTAI. This practice makes the 
development, debug and test of real-time applications much 
easier than in the kernel mode. This is the method that we 
use to implement the check pointing scheme on RTAI. 
For each real-time application running on the RTAI Linux, 
which is called “main function”, there are two associated 
tasks, i.e., the checkpoint task and the recovery task. These 
two tasks are performed through cooperation of four main 
modules: a check pointing module, a fault detection module, 
a fault recovery module, and a main function module. All 
the modules are implemented as real-time tasks supported 
by RTAI pre-emption and real-time scheduling services. 

Since the scheduling is based on priorities, the assignment 
of priorities set as below given show that higher number 
representing higher priorites. Main function has priority1, 
checkpoint has priority2, Fault Recovery has priority2 and 
Fault Detection has priority3. 
 

4. IMPLEMENTATION 
Our checkpoint library is developed in user space with 
LXRT. Under LXRT, these tasks can be conveniently 
coded and tested in user space, and at the same time benefit 
from the real-time characteristic. The implementation based 
on the deterministic preemption ability offered by the RTAI. 
With the RTAI scheduler, real-time tasks with higher 
priority will be able to pre-empt lower-priority tasks, and 
hence have deterministic timing behaviours. 
The first development step is to use the API’s provided by 
LXRT to create each function module as a real-time task 
associated with a priority specified. Specifically, we use 
two RTAI functions: rt_task_init_schmod and 
rt_make_hard_real_time to create a real-time task. There 
are two things happening after these two functions are 
called. At first, a task is created and is assigned a priority. 
In LXRT, however, SCHED_OTHER is the   standard 
Linux default scheduler performs non-preemptable and 
non-priority scheduling on tasks. So the second function is 
to switch the scheduling to SCHED_FIFO, which is 
intended for special and time-critical applications that need 
precise control over the way in which runnable processes 
are selected for execution. Processes scheduled with 
SCHED_FIFO are assigned static priorities in the range 
from 1 to 99, which mean that when a SCHED_FIFO 
process becomes runnable, it will immediately preempt a 
running SCHED_OTHER processor a SCHED_FIFO 
process of lower priority [5]. A FIFO policy is applied to 
processes of the same priority. Pre-empted SCHED_FIFO 
processes remain at the head of their priority queue and 
resume execution again once all higher-priority processes 
become blocked, which obviously can help us to 
predetermine our running order and realize real-time 
performance. 
We have four tasks running concurrently in a system. The 
main function is then created as a real-time task with 
priority1, which means it is the lowest priority and can be 
pre-empted by other higher priority tasks. In order to 
perform the check pointing functionality, we create a check 
pointing task with priority 2. Meanwhile, since a 
checkpoint will be taken periodically, we need to set a real-
time timer and make the check pointing task as periodically 
real-time task by calling the function start_rt_timer to start 
a real-time timer, and then rt_task_make_periodic to make 
the timer a periodical one. Then when the time reaches the 
period, the timer wakes up the check pointing task. There 
are two possible situations when the check pointing task is 
up: (1) when the current running task is main function. 
Since the check pointing task has higher priority, it 
preempts the running main function and start taking 
checkpoint. After the checkpoint is taken, another function 
rt_task_wait_period will be called such that the check 
pointing will be sent back to sleep and wait for next coming 
period. The real-time scheduler will then resume the 
execution of the main function; (2) if the current task is the 
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fault detection or fault recovery. Since the check pointing 
task has lower priority, the scheduler will simply block the 
task until the higher priority tasks finish. 
To achieve fault recovery, we need to create two real-time 
tasks, i.e. the recovery task with priority 2 and fault 
detection task with priority3. The fault detection task is also 
periodc. When the timer reaches the fault detection interval, 
the fault detection tasks preempts all running tasks and 
sends a “keep alive” signal to the main function. If no 
response is received, it will report a fault occurrence by 
sending an RPC signal to the fault recovery task then block 
itself. 
Different from the check pointing and fault detection tasks, 
the fault recovery task is event-driven instead of time 
driven. Specifically, it starts as infinity loop and waits for a 
fault event. When the recovery task receives “fault 
occurrence” signal from the fault detection task, it calls the 
function rt_task_resume so that the real-time scheduler put 
it in the front of the running for execution. The task will 
read the pervious checkpoint from the persistent storage, 
and recover the application state accordingly. After the 
recovery procedure finishes, the recovery task then calls 
rt_task_suspend function to suspend itself again infinite 
loop, until the next fault occurrence event arrives.   
It is worth that the check pointing frequency has impacts on 
system performance. In a particular, more frequent check 
pointing speed up the recovery when the failures occur, and 
therefore improves the system availability and accelerates 
the execution time. However, check pointing also takes 
time and consumes resources. It increases the fault-free 
execution time and can jeopardize the satisfaction of timing 
constraints. The check pointing task hence may need to 
communicate with non-real-time Linux processes to receive 
adaptive checkpoint     
Interval in formation. For instance, a central controller 
located in a remote process may decide the proper 
checkpoint interval and send the value to the check 
pointing task through communication network. The 
challenge for adaptive checkpoint interval in real-time 
application is that we need to guarantee that new 
checkpoint interval can be applied to the application and be 
effective within predictable time. 
RTAI provides a set of real-time Inter Process 
Communication (IPC) mechanisms that can be used to 
transfer and share data between tasks in both the real-time 
and Linux user space domains. These mechanisms include 
real-time FIFO’s, mailboxes, semaphores, and RPC’s 
(Remote Procedure Call). In this implementation, we use 
the mailboxes for check pointing task to receive message 
from normal Linux tasks.  
Specifically, when the check pointing task is resumed by 
the periodical timer and before it takes a checkpoint, it 
checks the mailbox queue to see if there is a message 
indicating the checkpoint intervals. If a new checkpoint 
interval is detected. The check pointing task finishes saving 
its current checkpoint first and then calls function 
next_period. This function resets the time which will be the 
caller periodical task’s next running period. Since the check 
pointing task can be guaranteed to obtain the CPU 
periodically, the adaptive checkpoint interval hence able to 
applied within a deterministic time range. In fact, if a 

checkpoint reset message is in the Mailbox queue, and the 
pervious checkpoint interval is Y, the new value will be 
effective is no later than 2Y time. 
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Fig.1 Checkpoint Architecture on RTAI 
 
 
4.1 EXPERIMENT RESULTS 
 The experiment settings are as follows: a Pentium Dual 
Core 1.6GHz CPU and 3GB RAM. The system is running 
on a Ubuntu Linux with kernel version 2.6.18 and an RTAI 
3.8 patch. In our experiments, we develop a simple 
application that adds 1 to the current values starting from 1 
until we force it to terminate. The check pointing operation 
is hence to save the current accumulation value into a file, 
and the recovery operation is to retrieve the checkpoint 
(pervious accumulation value) and continue adding values 
to that. 
 The experiment is to show that the time to take a 
checkpoint is predictable in our implementation. To test it 
in a tress environment, we create disturbing threads in the 
background. Specifically, when the check pointing task 
starts executing, we run various number of  normal Linux 
dummy threads (priority 0) and lower priority real-time 
dummy threads (priority=1) in the following order: first, we 
test the check pointing overhead with no disturbing threads. 
Here we have take 4 modules to implement the detail result. 
The production which contains the counter which generates 
task. The other modules are rollback, error checking and 
recovery module. Here the Faults are artificial generated by 
the user. Whenever the user press the CTRL key at that 
particular time the fault is generated at the system 
environment. At that particular time the error checking 
module report that faults was found. Than the rollback 
module again start from pervious checkpoint. The recovery 
modules immediately check that faults and repair it as well 
as it also display the time take to repair the faults. From 
more than one reading we obtained that it is predetermined. 
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(1) Time taken to repair a faul t 

 

 
          (1) Normal Linux threads Vs Check-pointing Time 

 

 
(2) Number of Real-Time Thread Vs Check-Pointing Time 
 

5.  CONCLUSION AND FUTUREWORK 
In this paper we implemented the checkpoint Rollback 
Recovery in RTAI 3.8 real-time operating system. The 
preemptable interrupt service provided by the RTAI makes 
the checkpoint overhead predictable, so that the checkpoint 
scheme is feasible to be applied in a real-time application to 
provide fault tolerance. The experiment result performed on 
a real system indicates that the checkpoint overhead is 
close to constants.  Our future work is to extend this work 
to distribute and virtualization environment, where global 
system states are maintained through synchronized 
checkpoint protocols. The deterministic synchronization 
overhead hence needs to be guaranteed by utilizing real-
time-aware and inter-process techniques.   
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